StockTM: Accurate Stock Price Prediction Model Using LSTM

Author:

Diqi Mohammad

Abstract

Stock prediction aims to forecast a future stock price trend to assist investors in making strategic investment choices. However, it is hard to predict the price in dynamic conditions, which causes investors hard to anticipate equities because of the unstable prices. Thus, in this paper, we present a novel stock price prediction model based on the Long Short-Term Memory (LSTM) algorithm. Several steps are taken in creating a stock prediction model, including collecting datasets, pre-processing, extracting features, training and validating the model using evaluation metrics techniques. Based on the experimental results, the proposed prediction model can obtain good accuracy with a small error rate in an extensive dataset training. Therefore, it can be a promising solution to deal with the dynamic prices. Moreover, the proposed model can achieve the results obtained: RMSE EMA10 of 0.00714, RMSE EMA20 of 0.00355, MAPE EMA10 of 0.07705, and MAPE EMA20 0.05273.

Publisher

Pusat Penelitian dan Pengabdian Pada Masyarakat Universitas Respati Yogyakarta

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Insights: Revolutionizing Stock Market Predictions with Machine Learning and Deep Learning Techniques;2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17

2. Stock Price Prediction using Long-Short Term Memory and Temporal Convolutional Network;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

3. PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU;Applied Computer Science;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3