Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Author:

Sanjari Neda, ,Shalbaf Ahmad,Shalbaf Reza,Sleigh Jamie, , ,

Abstract

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process. Methods: In this paper, by combining the Wiener causality concept and the conditional mutual information, a nonlinear effective connectivity measure called Transfer Entropy (TE) is presented to describe the relationship between EEG signals at frontal and temporal regions from eight volunteers in three anesthetic states (awake, unconscious and recovery). This index is also compared with Granger causality and partial directional coherence methods as common effective connectivity indexes. Results: Based on a statistical analysis of the probability predictive value and Kruskal-Wallis statistical method, TE can effectively fallow the effect-site concentration of propofol and distinguish the anesthetic states well, and perform better than the other effective connectivity indexes. This index is also better than Bispectral Index (BIS) as commercial DOA monitor because of the faster response and higher correlation with the drug concentration effect-site, less irregularity in the unconscious state and better ability to distinguish three states of anesthestesia. Conclusion: TE index is a confident indicator for designing a new monitoring system of the two EEG channels for DOA estimation.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3