Amelioration of Prenatal Lead-Induced Learning and Memory Impairments by Methanolic Extract of Zataria Multiflora in Male Rats

Author:

Taheri FarahnazORCID, ,Sepehri GholamrezaORCID,Sheibani Vahid,Sharififar Fariba, , ,

Abstract

Introduction: The current study aimed at evaluating the effects of Zataria Multiflora (ZM) on learning and memory of adult male offspring rats with prenatal lead-exposure. Methods: Pregnant rats in the case group received tap water containing 0.2% lead acetate throughout the gestation period. Control rats had free access to lead-free tap water. Two male offspring (two-month-old, weighing 180-200 g) from each mother were randomly selected and treated with either Z. Multiflora (50, 200, 400, and 800 mg/kg/ Intraperitoneally (I.P) /20 day) or saline. Spatial memory of the control, saline, and ZM-treated rats was evaluated by a training trial and probe test using Morris water maze (6-8 rat/group). Results: The obtained results showed memory deficits including increased escape latency, and a greater traveled distance, as well as decrements in the frequency of crossings into target quadrants in prenatally lead-exposed male offspring compared with the controls. ZM treatment (200 mg/kg/i.p) ameliorated the memory deficits in male offspring by increasing the time spent and traveled distance in the trigger zone (P<0.01 vs. saline).There was no significant difference in swimming speed between the groups. Conclusion: The results showed memory deficits in prenatally lead-exposed male offspring. ZM treatment (especially 200 mg/kg) had beneficial effects on cognitive behavior and was indicated as the improvement of lead-induced memory deficits in prenatally lead-exposed male rats. The exact mechanism(s) is not determined yet, but it could be mediated through the anticholinesterase and antioxidant effects and also alterations in Central Nervous System (CNS) and neurotransmission in the central nervous system.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3