Network-based analysis reveals the potential involvement of proteasome subunit alpha-2 in tetralogy of Fallot

Author:

Karami Hassan, ,Moosavi Maryam,Derakhshani Afshin,Miri-Moghaddam Ebrahim,Touma Marlin,Baradaran Behzad,Alizadeh Nazila,Mashhadi Abdolahi Hossein,Hajiasgharzadeh KhalilORCID,Safarpour Hossein, , , , , , , , ,

Abstract

Introduction: Tetralogy of Fallot (TOF) is the most common cyanotic form of congenital heart defects. However, there is no effective therapeutic approach and current therapies have limited curative efficacy. Moreover, the exact etiology of TOF has remained largely unknown. Improved understanding of molecular mechanisms can give an insight into TOF pathogenesis and development of therapeutic approaches. Methods: Here, we conducted a systematic study on the right ventricular myocardium of 24 infants (16 ToF/8 control) using weighted gene co-expression network analysis (WGCNA) to identify meaningful modules or candidate biomarkers. Results: Co-expression network analysis by WGCNA suggested that a highly preserved turquoise module with 2,493 genes and a P-value of 3×10-11 was significantly correlated to TOF. The top 5 hub genes of this module were PSMA2, MYL12A, C11ORF71, COMMD6, and CREG1. The result of turquoise module enrichment showed that the most correlation topic in biological processes and KEGG pathways were positive regulation of cardiac neural crest migration involved in outflow tract morphogenesis and positive regulation of neural crest cell differentiation. Also, we recognized 4 FDA-approved drug candidates for other indications could potentially use for the treatment of TOF patients through regulation of two hub genes of the co-expression network (PSMA2 and NDUFA4). Our findings also showed that the 13 experimentally validated microRNAs regulated the co-expression network through 5 hub genes. Conclusion: We systematically recognized co-expressed gene modules and hub genes associated with TOF progression, which offered insights into the mechanisms underlying TOF progression and some potential drugs for the treatment of TOF.

Publisher

CMV Verlag

Subject

Pharmacology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3