Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury

Author:

Pourkhodadad Soheila, ,Oryan Shahrbanoo,Hadipour Mohammadmehdi,Kaka Gholamreza,Sadraie Seyed Homayoon, , , ,

Abstract

Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promote locomotor function after spinal cord injury. In the present study, we investigated the neuroprotective effects of combined treatment with minocycline and OECs on the spinal cord injury in relation with brain-derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF) expressions after SCI. Methods: Adult female rats were used to experimental SCI by weight compression method. Rats received intraperitoneal injection of minocycline (90 mg/kg) immediately after SCI and then 24 h after injury. OECs were transplanted one week after the injury. The hindlimb function was assessed using Basso Beattie Bresnahan (BBB) locomotor rating scale and electromyography (EMG). After five weeks, the segment of the spinal cord centered at the injury site was removed for histopathological analysis. Immunohistological and western blot assays were performed to observe the expression of NeuN, BDNF, GDNF and myelin basic protein (MBP). Results: SCI induced loss of locomotor function with decreased BDNF and GDNF expressions in the injury site. Minocycline +OECs increased the score of BBB locomotor scale and increased spared tissue in the injury site. Immunohistochemical results showed NeuN expression significantly increased in minocycline + OECs group than other groups. Also electromyography amplitude in treated rats was increased compared to control group. BDNF, GDNF and MBP expressions and the number of ventral motor neurons increased further by minocycline + OECs in SCI rats. Conclusion: The present study provides the evidence that minocycline may facilitate recovery of locomotor function by OECs through increasing of BDNF and GDNF expressions following SCI.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Clinical Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3