A New Nonlinear Autoregressive Exogenous (NARX)-based Intra-spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-injured Rabbits

Author:

Younessi Heravi Mohamad Amin, ,Maghooli Keivan,Nowshiravan Rahatabad Fereidoun,Rezaee Ramin, , ,

Abstract

Introduction: This study aimed at investigating the stimulation by intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). Methods: The present work is comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trials. Second, an appropriate set of intra-spinal electric stimuli was discovered to restore natural leg movements, using the three leg joint movements under a fuzzy-controlled strategy in spinally-injured rabbits under anesthesia. Third, a nonlinear autoregressive exogenous (NARX) neural network model was developed to produce appropriate intra-spinal stimulation developed from decoded ECoG information. The model was able to correlate the ECoG signal data to the intra-spinal stimulation data and finally, induced desired leg movements. In this study, leg movements were also developed from offline ECoG signals (deciphered from rabbits that were not injured) as well as online ECoG data (extracted from the same rabbit after SCI induction). Results: Based on our data, the correlation coefficient was 0.74±0.15 and the normalized root means square error of the brain-spine interface was 0.22±0.10. Conclusion: Overall, we found that using NARX, appropriate information from ECoG recordings can be extracted and used for the generation of proper intra-spinal electric stimulations for restoration of natural leg movements lost due to SCI.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3