The Effect of Modeling Methods on Mirror Neurons Activity and a Motor Skill Acquisition and Retention

Author:

Ashraf Ramin, ,Abdoli Behrouz,Khosrowabadi Reza,Farsi Alireza,Pineda Jaime A., , , ,

Abstract

Purpose: Mirror neurons have been suggested as a potential neural mechanism of observational learning. The purpose of the present study was to investigate the effect of self-modeling, skilled model, and learning model on mu rhythm suppression and golf putting acquisition and retention. Method: The study was conducted on 45 male volunteer students (age, 19.4 ± 0.37 years) in three experimental groups: self-modeling, skilled, and learning models with six sessions of physical and observational training in three periods of pre-test, acquisition, and retention. In the pre-test, after the initial familiarity with the skill, participants performed 10 golf putting actions while scores were recorded. Then, electrical brain waves in C3, C4 and Cz regions were recorded during the observation 10 golf putting actions by their group-related models. The acquisition period consisted of golf putting training during six sessions, each of which included six blocks of 10 trials. Before each training block, participants observed 10 times in the forms of video of golf putting related to their group. Acquisition and delayed retention tests were also performed by recording scores of 10 golf putting actions, as well as recording electrical brain waves while observing the skill performed by the related model. Results: Mixed analysis of variance (ANOVA) showed that the mu rhythm suppression the pre-test was more in the self-modeling group in contrast to skilled model and learning model groups, but this suppression in all three groups in the acquisition and retention tests was not significantly different. In putting task variables, all three groups that did not a significant difference in the pretest period made considerable progress in learning the desired skill from the pre-test to the acquisition test, and this progress was somewhat stable until the retention test. Also, both in the acquisition and the retention periods, the self-modeling group displayed better performance than the other two groups; however, there was no significant difference between these groups. Conclusion: These findings suggest that the model-observer similarity is an important factor in modeling interventions and can affect the rate of mu rhythm suppression.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Clinical Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Criteria for the High Quality Training of Police Officers;Police Conflict Management, Volume II;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3