The Effect of Sialic Acid on MiR-320a and Let-7e Expression in Human Glial Cell Line

Author:

Noorbakhsh Negar, ,Galehdari Hamid,Shafiei Mohammad, ,

Abstract

Introduction: Sialic acid is pivotal in various critical physiological events at molecular and cellular levels and pathological processes. Changes in sialic acid concentration are observed in many pathological processes; for example, some available data exist on the evaluated level of sialic acid and neurodegenerative prevalence. Presumably, sialic acid can play a significant role in regulating a diverse range of uncovered neurodegeneration factors and downstream targets. matrix metalloproteinases 9 (MMP9) is one factor that changes the exposure of different concentrations of sialic acid solution. Hence, we aimed to examine the possible effect of sialic acid solution exposure on the glial cell line in the expression patterns of miR-320a and let-7e as two upstream factors. Methods: Human glial cell line was prepared from the Pasteur Institute of Iran and cultured in a dulbecco’s modified eagle medium (DMEM) with 10% fetal bovine serum (FBS). The IC50 value of sialic acid was obtained by colorimetric assay for assessing cell metabolic activity 3-(4,5-Dimethylthiazol-2-yl (MTT), and the glial cell line was treated with sialic acid in 300, 500, 1000 µg/mL for 24 h to investigate the effect of the sialic acid ligand on the expression pattern of the miR-320a and let-7e. Total RNA was isolated from approximately 10×106 glial cells and was used from each sample for complementary dna (cDNA) synthesis. For quantitative analysis of miR-320a and let-7e, we used real-time polymerase chain reaction (PCR), and for statistical analysis, the SPSS v. 21 software was applied. Results: Analyzing the real-time data revealed that the expression of miR-320a and let-7e was significantly increased (P<0.0001) in 300, 500, and 1000 µg/mL treated glial cells by sialic acid compared to the control group. Conclusion: A possible linkage of sialic acid on miR-320a and let-7e regulation was observed in the glial cell line as proinflammatory factors in the inflammation pathway.

Publisher

Negah Scientific Publisher

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3