A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum

Author:

Zhang Anqi,Rijal Keshab,Ng Seng Kah,Ravid Katya,Chitalia Vipul

Abstract

In addition to various physiologic roles, emerging evidence strongly points to pathogenic roles of tryptophan and of its metabolites, especially in diseases such as renal failure. Accurate estimation of levels of these metabolites in blood is important to mechanistically probe their contribution to disease pathogenesis, while clinically, such a panel can be used to risk stratify patients for a clinical phenotype. Herein, we describe a comprehensive liquid chromatography-mass spectrometry (LC/MS)-based method to determine the level of tryptophan and its metabolites (kynurenine, kynurenic acid, xanthurenic acid, anthranilic acid, indoxyl sulfate and indoxyl acetate). Human sera samples were processed through a C18 column followed by application of a binary gradient and quantitation by MS/MS. The linearity, lower limit of detection, inter- and intraassay variabilities and recovery were determined, yielding a precise, reproducible method for all the metabolites. Unlike previous studies, we further validated these methods in a well-characterized set of human sera from end stage renal disease patients compared to age-, gender- and ethnic-background matched human controls. Overall, we report an optimized LC/MS-based estimation of a comprehensive panel of tryptophan-derived metabolites with quality features within FDA standards, underscoring their readiness for translational use.

Publisher

Journal of Biological Methods

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3