Abstract
The most widespread mechanized way of oil production is use of sucker rod deep pumping units. This mode of well operation is characterized by moderate costs of the equipment and its service, increase in production when developing difficult-to-recover oil reserves, increase in production of layer which is reached by decrease in critical bottom hole pressure. Installation of the sucker rod deep pump comprises the land and borehole equipment. The drive, the well head setup and control system belongs to the land equipment. For today the pump unit is used as a wire. The unit itself represents the four-link crank-and-rod mechanism converting crank rotational motion into reciprocal motion of polished rod carrier bar. The work considers the prospects of creation and implementation of the drives nonconventional designs replacing classical pumping units, namely hydraulic actuators of sucker rod deep pumps on Ukrainian oil fields. Furthermore, the possible fields of their use has been defined. The hydraulic pressure drives existing designs presented by the leading global manufactures have been analyzed via critical-comparative method. Moreover, their design features in comparison with pumping units and chain occasions have been covered, the main advantages and shortcomings have been revealed. The usage possibilities of remote and automatic control of the hydraulic pressure drive working mode have been specified. The drive allows to carry out monitoring and remote control of technological process in real time with the minimum participation of service staff. The work presents the results of the hydraulic pressure drive PSHN-80-2.5 with pneumatic equilibration pilot test on well 64-Dolyna of scientific testing ground of the Ivano-Frankivsk National Technical University of Oil and Gas which have confirmed the work capacity of all drive systems and also convenience of carrying out the installation operations.
Publisher
Ivano-Frankivsk National Technical University of Oil and Gas
Subject
Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献