GRAPE: A Stochastic Geometrical 3D Model for Aggregates of Particles With Tunable 2D Morphological Projected Properties

Author:

Theodon LeoORCID,Coufort-Saudejaud Carole,Debayle Johan

Abstract

The main goal of this paper is to propose a method for the 3D morphological characterization of compact aggregates using 2D image analysis. The problem at hand is the 3D morphometric characterization of latex nanoparticle aggregates. The only available information is 2D projection images of these aggregates, one projection per aggregate. In this context, a method to estimate the 3D morphological characteristics of an aggregate such as the Volume, Surface Area or Solidity from a single projection is proposed. This method is based on a stochastic geometric model called GRAPE (Geometrical Random Aggregation of Particles Emulation) and requires some strong assumptions, and in particular prior estimation of the volume. The model is based on an iterative packing of spheres of identical radii. For each iteration, a fitting function allows to reach objectives corresponding to the desired 2D properties (Area, Perimeter, Aspect Ratio, ...). In order to implement the method, an optimization process must be performed on two parameters of the model: the radius of the elementary particles r and an overlapping distance di. As a validation, this process will be applied to synthetic aggregates, themselves generated from the GRAPE model, then to a population of 104 synthetic aggregates, and finally to 3D printed aggregates whose 3D morphological properties are known thanks to an STL file, and whose projected images have been produced using a morphogranulometer. The results obtained show an excellent approximation of 2D properties by the GRAPE model, and very good results for 3D properties, with less than 5% error on average and less than 2% error in most cases.

Publisher

Slovenian Society for Stereology and Quantitative Image Analysis

Subject

Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology, Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3