Author:
Dembia Christopher Lee,Liu Yu Cheng,Avedisian C. Thomas
Abstract
A simple automated image analysis algorithm has been developed that processes consecutive images from high speed, high resolution digital images of burning fuel droplets. The droplets burn under conditions that promote spherical symmetry. The algorithm performs the tasks of edge detection of the droplet’s boundary using a grayscale intensity threshold, and shape fitting either a circle or ellipse to the droplet’s boundary. The results are compared to manual measurements of droplet diameters done with commercial software. Results show that it is possible to automate data analysis for consecutive droplet burning images even in the presence of a significant amount of noise from soot formation. An adaptive grayscale intensity threshold provides the ability to extract droplet diameters for the wide range of noise encountered. In instances where soot blocks portions of the droplet, the algorithm manages to provide accurate measurements if a circle fit is used instead of an ellipse fit, as an ellipse can be too accommodating to the disturbance.
Publisher
Slovenian Society for Stereology and Quantitative Image Analysis
Subject
Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology, Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献