MULTI-FEATURE MUTUAL INFORMATION IMAGE REGISTRATION

Author:

Tomaževič Dejan,Likar Boštjan,Pernuš Franjo

Abstract

Nowadays, information-theoretic similarity measures, especially the mutual information and its derivatives, are one of the most frequently used measures of global intensity feature correspondence in image registration. Because the traditional mutual information similarity measure ignores the dependency of intensity values of neighboring image elements, registration based on mutual information is not robust in cases of low global intensity correspondence. Robustness can be improved by adding spatial information in the form of local intensity changes to the global intensity correspondence. This paper presents a novel method, by which intensities, together with spatial information, i.e., relations between neighboring image elements in the form of intensity gradients, are included in information-theoretic similarity measures. In contrast to a number of heuristic methods that include additional features into the generic mutual information measure, the proposed method strictly follows information theory under certain assumptions on feature probability distribution. The novel approach solves the problem of efficient estimation of multifeature mutual information from sparse high-dimensional feature space. The proposed measure was tested on magnetic resonance (MR) and computed tomography (CT) images. In addition, the measure was tested on positron emission tomography (PET) and MR images from the widely used Retrospective Image Registration Evaluation project image database. The results indicate that multi-feature mutual information, which combines image intensities and intensity gradients, is more robust than the standard single-feature intensity based mutual information, especially in cases of low global intensity correspondences, such as in PET/MR images or significant intensity inhomogeneity.

Publisher

Slovenian Society for Stereology and Quantitative Image Analysis

Subject

Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3