Estimating the Parameters of a Stochastic Geometrical Model for Multiphase Flow Images Using Local Measures

Author:

Theodon Leo,Eremina Tatyana,Dia Kassem,Lamadie Fabrice,Pinoli Jean-Charles,Debayle Johan

Abstract

This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase flow image processing using local measures. Local measures differ from global measures in that they are only based on a small part of a binary image and consequently provide different information of certain properties such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An optimization algorithm is used to minimize a cost function based on the likelihood of a probability densityof local measurements. The performance of the model is analysed using numerical experiments and real observations. The errors relative to real images of most of the properties of the model-generated images are less than 2%. The covariance and particle size distribution are also calculated and compared.

Publisher

Slovenian Society for Stereology and Quantitative Image Analysis

Subject

Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology, Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3