Visible and Infrared Object Tracking Based on Multimodal Hierarchical Relationship Modeling

Author:

Yao Rui,Qiu Jiazhu,Zhou Yong,Shao Zhiwen,Liu Bing,Zhao Jiaqi,Zhu Hancheng

Abstract

Visible RGB and Thermal infrared (RGBT) object tracking has emerged as a prominent area of focus within the realm of computer vision. Nevertheless, the majority of existing RGBT tracking methods, which predominantly rely on Transformers, primarily emphasize the enhancement of features extracted by convolutional neural networks. Unfortunately, the latent potential of Transformers in representation learning has been inadequately explored. Furthermore, most studies tend to overlook the significance of distinguishing between the importance of each modality in the context of multimodal tasks. In this paper, we address these two critical issues by introducing a novel RGBT tracking framework centered on multimodal hierarchical relationship modeling. Through the incorporation of multiple Transformer encoders and the deployment of self-attention mechanisms, we progressively aggregate and fuse multimodal image features at various stages of image feature learning. Throughout the process of multimodal interaction within the network, we employ a dynamic component feature fusion module at the patch-level to dynamically assess the relevance of visible information within each region of the tracking scene. Our extensive experimentation, conducted on benchmark datasets such as RGBT234, GTOT, and LasHeR, substantiates the commendable performance of our proposed approach in terms of accuracy, success rate, and tracking speed.

Publisher

Slovenian Society for Stereology and Quantitative Image Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3