Author:
Jeny Afsana Ahsan,Junayed Masum Shah,Islam Md Baharul
Abstract
Fundus images are the principal tool for observing and recognizing a wide range of ophthalmological abnormalities. The automatic and robust methods based on color fundus images are urgently needed since few symptoms are observable in the early stages of the disease. Experts must manually evaluate images to detect diseases for screening procedures to be effective. Due to the complexity of the screening procedure and the shortage of experienced personnel, developing successful screening-based treatments is costly. Although existing automated approaches strive to address these issues, they cannot handle a wide range of diseases and real-world circumstances. We design an automated deep learning-based ensemble method to detect and classify eye diseases from fundus images to address the abovementioned problems. A deep CNN-based model is proposed in the ensemble method that incorporates a mix of 20 layers, including the activation, optimization, and loss functions. The contrast-limited adaptive histogram equalization (CLAHE) and Gaussian filter are utilized in the pre-processing step to get more explicit images and eliminate noise. To avoid overfitting in the training phase, augmentation techniques are applied. Three pre-trained CNN models, including VGG16, DenseNet201, and ResNet50, are employed to compare and assess the efficiency of the proposed CNN model. Experimental results demonstrate that the ensemble approach outperforms recent approaches, which is comparatively state-of-art in the ODIR publicly available dataset.
Publisher
Slovenian Society for Stereology and Quantitative Image Analysis
Subject
Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology, Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献