Improving the Cavalieri estimator under non-equidistant sampling and dropouts
-
Published:2020-11-25
Issue:3
Volume:39
Page:197-212
-
ISSN:1854-5165
-
Container-title:Image Analysis & Stereology
-
language:
-
Short-container-title:Image Anal Stereol
Author:
Stehr MadsORCID,
Kiderlen Markus
Abstract
Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies.Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.
Publisher
Slovenian Society for Stereology and Quantitative Image Analysis
Subject
Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献