Cybercrime characterization in the department of Cundinamarca during 2021 through exploratory analysis and machine learning

Author:

Chanchí Golondrino Gabriel Elías,Ospina Alarcón Manuel Alejandro,Muñoz Sanabria Luis Freddy

Abstract

Teniendo en cuenta la amplia difusión que ha tenido la analítica de datos en diferentes ámbitos de aplicación y considerando los escases de datasets específicos asociados a los delitos informáticos dentro de las estrategias de datos abiertos en Colombia, este artículo tiene como objetivo realizar la caracterización de los delitos informáticos del departamento de Cundinamarca, mediante el uso de técnicas de análisis exploratorio y machine learning. La presente investigación fue desarrollada mediante 4 fases metodológicas: adecuación de los datos, análisis exploratorio de los datos, aplicación de modelos de machine learning y finalmente generación de información de valor agregado. Para el desarrollo del estudio propuesto, se conformó un conjunto de datos a partir del dataset de 35000 registros publicado por la Policía Nacional en el portal de datos abiertos de Colombia, el cual aborda los delitos de alto impacto dentro del departamento de Cundinamarca y ocurridos durante el primer semestre de 2021. El dataset de delitos cibernéticos conformado cuenta con un total de 1513 registros e incluye atributos tales como: día, trimestre, municipio, zona, victima, edad y delito, de tal modo que a nivel del análisis exploratorio se aplicaron métodos de estadística descriptiva sobre los diferentes atributos, mientras que a nivel de machine learning se hizo uso de los modelos de reglas de asociación y clustering con el fin de determinar de manera respectiva la relación de los atributos con el tipo de delito, y los grupos representativos que se forman al relacionar la edad con el tipo de delito y el municipio con el tipo de delito. El estudio desarrollado permitió demostrar la utilidad y potencialidad que tienen las técnicas de analítica de datos en el campo de la ciberseguridad, de cara a apoyar la toma de decisiones por parte de las autoridades pertinentes.

Publisher

Universidad del Valle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3