Predicción del rendimiento de cultivos de café: un mapeo sistemático

Author:

Muñoz Ordoñez Cristian Camilo,Cobos Lozada Carlos AlbertoORCID,Muñoz Ordóñez Julian FernandoORCID

Abstract

El café es uno de los productos agrícolas más comercializados internacionalmente y en Colombia, es el primer producto de exportación no minero-energético. En este contexto, la predicción del rendimiento de los cultivos de café es vital para el sector, ya que permite a los caficultores establecer estrategias de manejo del cultivo, maximizando sus ganancias o reduciendo posibles pérdidas. En este artículo, se abordan aspectos cruciales de la predicción del rendimiento de los cultivos de café mediante una revisión sistemática de literatura de documentos consultados en Scopus, ACM, Taylor & Francis y Nature. Estos documentos se sometieron a un proceso de filtrado y evaluación para responder cinco preguntas clave: variables predictoras, variable objetivo, técnicas y algoritmos empleados, métricas para evaluar la calidad de la predicción y tipos de café reportados. Los resultados revelan distintos grupos de variables predictoras que incluyen factores atmosféricos, químicos, obtenidos vía satélite, relacionados con fertilizantes, suelo, manejo del cultivo y sombras. La variable objetivo más recurrente es el rendimiento medido en peso de granos por hectárea u otras medidas, con un caso que considera el área foliar. Entre las técnicas predominantes para predecir el rendimiento se encuentran la regresión lineal, los bosques aleatorizados, el análisis de componentes principales, la regresión por conglomerados, las redes neuronales, los árboles de clasificación y regresión y las máquinas de aprendizaje extremo, entre otras. Las métricas más comunes para evaluar la calidad de los modelos predictivos incluyen R², RMSE, MAE, MAPE, MRE, error estándar, coeficiente de correlación de Pearson y desviación estándar. Por último, las variedades de café más estudiadas son robusta, arábica, racemosa y zanguebariae.

Publisher

Universidad del Valle

Reference58 articles.

1. OEC. Coffee OEC - The Observatory of Economic Complexity [Internet]. 2022 [cited 2022 Oct 9]. Available from: https://oec.world/en/profile/hs/coffee

2. Sporchia F, Caro D, Bruno M, Patrizi N, Marchettini N, Pulselli FM. Estimating the impact on water scarcity due to coffee production, trade, and consumption worldwide and a focus on EU. J Environ Manage. 2023 Feb 1;327:116881.

3. Allen L. Coffee Statistics: Consumption, Preferences, & Spending [Internet]. 2023 [cited 2023 Jul 20]. Available from: https://www.driveresearch.com/market-research-company-blog/coffee-survey/

4. Collins M. 90 U.S Coffee Statistics You Should Know - New Infographics [Internet]. 2022 [cited 2023 Jul 20]. Available from: https://www.perfectbrew.com/blog/coffee-statistics-infographic/

5. Ali AA, Student PD, Kannaji Rao C V, Ravi J. Factors Influencing Members’ Economic Satisfaction In Cooperatives: The Case Of Oromia Coffee Farmer Cooperative Union In Oromia Regional State Of Ethiopia. Seybold Report Journal. 2023;18(04):147–72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3