Author:
Ceballos-Lira Marcos Josías,Pérez Aroldo
Abstract
In this paper we prove the local existence of a nonnegative mild solution for a nonautonomous semilinear heat equation with Dirichlet condition, and give sucient conditions for the globality and for the blow up infinite time of the mild solution. Our approach for the global existence goes back to the Weissler's technique and for the nite time blow up we uses the intrinsic ultracontractivity property of the semigroup generated by the diffusion operator.
Publisher
Universidad Nacional de Colombia
Reference36 articles.
1. C. Bandle and H. Brunner, Blowup in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998), 3-22.
2. J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer-Verlag, 1989.
3. M. Birkner, J. A. López-Mimbela, and A. Walkonbinger, Comparison results and steady states for the fujita equation with fractional laplacian, Annales de L'Institute Henri Poncare-Analyse non Linéare 22 (2005), 83-97.
4. K. Bogdan, T. Grzywny, and M. Ryznar, Dirichlet heat kernel for unimodal lévy processes, Stochastic Process. Appl. 124 (2014), 3612-3650.
5. M. Bogoya, Sobre la explosión de una ecuación de difusión no local con término de reacción, Boletín de Matemáticas 24 (2017), no. 2, 117-130.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献