Author:
Arias Cantillo Raibel,Alvarez Bilbao Rafael
Abstract
A homoclinic class is the closure of the transverse intersection points of the stable and unstable manifolds of a hyperbolic periodic orbit. In this paper, we prove, using the techniques presented in [1], that the Plykin and the Solenoid attractors are a homoclinic class.
Publisher
Universidad Nacional de Colombia
Reference10 articles.
1. S. Bautista, The geometric lorenz attractor is a homoclinic class, Boletín de Matemáticas XI (2004), no. 1, 68-78.
2. M. Lee, Measure-expansive homoclinic class for c1 generic flows, Mathematics 8 (2020), pp 1232.
3. A. M. López and A. E. Arbieto, Finiteness of homoclinic classes on sectional hyperbolic sets, arXiv preprint arXiv:1908.04424, 2019.
4. V. Mayer, B. Skorulski, and M. Urbanski, Distance expanding random mappings, thermodynamic formalism, Gibbs measures and fractal geometry, Lecture notes in mathematics. 2036, 2011, Springer-Verlag.
5. S. Michael, Global stability of dynamical systems, Springer-Verlag, 1987.