Author:
Hernández Alvarado Alberto
Abstract
In this paper we study the minimum depth of a subalgebra embedded in a factorization algebra, and outline how subring depth, in this context, is related to module depth of the regular left module representation of the given subalgebra, within the appropriate module ring. As a consequence, we produce specific results for subring depth of a Hopf subalgebra in its Drinfel'd double. Moreover we study a necessary and sufficient condition for normality of a Hopf algebra within a double cross product context, which is equivalent to depth 2, as it is well known by a result of Kadison. Using the sufficient condition, we then prove some results regarding minimum depth 2 for Drinfel'd double Hopf subalgebra pairs, particularly in the case of finite group algebras. Finally, we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario.
Publisher
Universidad Nacional de Colombia
Reference15 articles.
1. R. Boltje and B. Külshammer, On the depth 2 condition for group algebra and hopf algebra extensions, J. of Alg. 323 (2010), no. 6, 1783-1796, DOI 10.1016/j.jalgebra.2009.11.043.
2. T. Brzezinski and R. Wisbauer, Corings and Comodules, Lecture Notes Series 309, L.M.S. Cambridge University Press, 2003, DOI 10.1017/CBO9780511546495.
3. D. Bulacu, S. Caenepeel, and B. Torrecillas, On Cross Product Hopf Algebras, J. of Alg. 377 (2013), 1-48, DOI 10.1016/j.jalgebra.2012.10.031.
4. A. Hernández, Algebraic quotient modules, coring depth and factorisation algebras, Ph.D. Dissertation, 2016, Univ. do Porto.
5. A. Hernández, L. Kadison, and S. Lopes, A Quantum subgroup depth, Acta Math. Hung. 152 (2016), 166-181, DOI 10.1007/s10474-017-0694-6.