Author:
Moreno Jorge,Pineda Ebner,Urbina Wilfredo
Abstract
The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {Tt}t≥ 0 in Rd, on Gaussian variable Lebesgue spaces Lp(.) (γd); under a condition of regularity on p(.) following [5] and [8]. As an immediate consequence of that result, the Lp(.) (γd)-boundedness of the Ornstein-Uhlenbeck semigroup {Tt}t≥ 0 in Rd is obtained. Another consequence of that result is the Lp(.) (γd)-boundedness of the Poisson-Hermite semigroup and the Lp(.) (γd)- boundedness of the Gaussian Bessel potentials of order β > 0.
Publisher
Universidad Nacional de Colombia
Reference12 articles.
1. D. Bakry, Functional inequalities for Markov semigroups., Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006.
2. D. Bakry and O. Mazet, Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Sem. Prob. XXXVII. Lec. Notes in Math 1832 Springer (2003), 60-80.
3. E. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal banach spaces, Proc Amer Math Soc 127 (1999), no. 1, 79-87.
4. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, 2013.
5. E. Dalmasso and R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integral Transforms and Special Functions 28 (2017), no. 5, 403-420.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献