Author:
Chaparro-Giraldo Alejandro,Blanco M. Jennifer Teresa,López-Pazos Silvio Alejandro
Abstract
Maize (Zea mays) is an important crop worldwide and is essential for industry. Many transgenic cultivars of maize have been developed over the years from this species, producing cultivars resistant to herbicides and insects, among other things. However, little is known about the gene f low processes that affect maize fields in Colombia, which is near the center of diversity for cultivated maize. We analyzed the gene f low phenomenon of 60 randomly chosen plots of maize, including farmer field landraces or other conventional varieties such as non-transgenic hybrids in Valle de San Juan (Colombia) using Inmunostrip®, PCR and ELISA tests on leaves (seed gene f low) and seeds (pollen gene f low). more than 88% of the plots were positive with the Inmunostrip® and PCR tests (35s promoter, Nos terminator and cry1F gene), using the leaves, while the remaining seven plots (12%) were positive for transgenic sequences in the seeds. The results indicated a significant level of overall transgene existence, which is consistent with gene f low from transgenic events. All of the field types (conventional maize, buffer zones, refuge, and Colombian landraces) showed evidence of a transgene presence. There are many problems that could increase the gene f low potential in Valle de San Juan, such as little respect for regulations (Colombian Decree 4525 on transgenic crops and biosafety), distance between transgenic and non-transgenic maize or use of refuge and/or buffer zones, high seed reuse and exchange and low technical assistance. Every policy decision must be made in light of scientific standards of judgment.
Publisher
Universidad Nacional de Colombia
Subject
Agronomy and Crop Science
Reference46 articles.
1. Agro-bio. 2015. Estadísticas de cultivos GM en Colombia. In: http://agrobio.org.co/fend/index.php?op=YXA9I2JXbDQmaW09I016UT0; consulted: November, 2015.
2. Agrobio-CEGA. 2010. El beneficio económico por la adopción de la tecnología de OGM para maíz en Colombia. Universidad de Los Andes, Bogota.
3. Andow, D.A., S.L. Farrell, and Y. Hu. 2010. Planting patterns of in-field refuges observed for Bt maize in Minnesota. J. Econ. Entomol. 103, 1394-1399. Doi: 10.1603/EC09201
4. Avila M., K., A. Chaparro-Giraldo, G. Reyes M., and C. Silva C. 2011. Production cost analysis and use of pesticides in the transgenic and conventional corn crop [Zea mays (L.)] in the valley of San Juan, Tolima. GM Crops 2, 163-168. Doi: 10.4161/gmcr.2.3.17591
5. Baltazar, B.M., L. Castro E., A. Espinoza B., J.M. de la Fuente M., J.A. Garzón T., J. González G., M.A. Gutiérrez, J.L. Guzmán R., O. Heredia D., M.J. Horak, J.I. Madueño M., A.W. Schapaugh, D. Stojšin, H.R. Uribe M., and F. Zavala G. 2015. Pollen-mediated gene f low in maize: implications for isolation requirements and coexistence in Mexico, the center of origin of maize. PloS ONE 10, e0131549. Doi: 10.1371/journal.pone.0131549
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献