Contents of non-structural carbohydrates in fruiting cape gooseberry (Physalis peruviana L.) plants

Author:

Fischer GerhardORCID,Ulrichs Christian,Ebert Georg

Abstract

Although the cape gooseberry has become the second most important export fruit in Colombia, information is scarce for its carbohydrate partitioning, which plays a major role in plant productivity. Seed-propagated Colombia ecotypes were kept in a greenhouse in 2.5-L plastic containers filled with washed quartz sand and were ferti-irrigated. The plants were pruned to one main vegetative stem with two generative stems. Dry matter (DM) partitioning during the initial plant growth showed the highest accumulation rate in the roots during the first 20 days, whereas, at a later stage of development, the shoot DM gain was higher and the leaf DM gain was lower than that of the roots. Sixty days after transplant, the plant parts were quantified and analyzed for glucose, fructose, sucrose, and starch. The roots were the largest carbohydrate pool for starch, but the sucrose content was lower in the roots than in the vegetative stem and the lower part of the reproductive stems. At 5-15 cm of the vegetative stem base, 6.4 mg of starch, 1.4 mg of monosaccharides and 5.3 mg/100 g of DM sucrose were found, indicating that this lower organ is also important for starch accumulation and, especially, for sucrose transport. In the two reproductive stems, the starch contents were much higher in the base part than in the apical part; the same relationship was found in the leaves. The monosaccharide content was the highest in the apical stem position with 8.2 mg/100 g DM. In contrast, the apical-positioned 10-day-old fruits had maximum starch concentrations (11.6 mg/100 g DM), possibly due to the assimilatory starch from green fruit photosynthesis, whereas the mature basal fruits (60-day-old) mainly accumulated sucrose (25.7 mg) and monosaccharides (21.2 mg/100 g DM).

Publisher

Universidad Nacional de Colombia

Subject

Agronomy and Crop Science

Reference54 articles.

1. Araya, T., K. Noguchi, and I. Terashima. 2006. Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L. Plant Cell Physiol. 47, 644-652. Doi: 10.1093/pcp/pcj033

2. Barceló, J., G. Nicolás, B. Sabater, and R. Sánchez. 2001. Fisiología vegetal. Editorial Pirámide, Madrid.

3. Bergmeyer, H.U. 1977. Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, Germany.

4. Blanke, M.M. 1990. Photosynthesis in subtropical fruits - review paper. Acta Hort. 275, 435-439.

5. Boehringer AG. 1989. Methods of biochemical analysis and food analysis using test-combinations. Boehringer, Mannheim, Germany.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3