Comparison of Correction Factors and Sample Size Required to Test the Equality of the Smallest Eigenvalues in Principal Component Analysis

Author:

Gañan-Cardenas EduardORCID,Correa-Morales Juan CarlosORCID

Abstract

In the inferential process of Principal Component Analysis (PCA), one of the main challenges for researchers is establishing the correct number of components to represent the sample. For that purpose, heuristic and statistical strategies have been proposed. One statistical approach consists in testing the hypothesis of the equality of the smallest eigenvalues in the covariance or correlation matrix using a Likelihood-Ratio Test (LRT) that follows a χ2 limit distribution. Different correction factors have been proposed to improve the approximation of the sampling distribution of the statistic. We use simulation to study the significance level and power of the test under the use of these different factors and analyze the sample size required for an dequate approximation. The results indicate that for covariance matrix, the factor proposed by Bartlett offers the best balance between the objectives of low probability of Type I Error and high Power.             If the correlation matrix is used, the factors W ∗             and cχ2             are the most               recommended. Empirically, we can observe that most factors require sample sizes 10 or 20 times the number of variables if covariance or correlationmatrices, respectively, are implemented.

Publisher

Universidad Nacional de Colombia

Subject

Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3