An Actionable Learning Path-based Model to Predict and Describe Academic Dropout

Author:

Olivares-Rodríguez CristianORCID,Moreno-Marcos Pedro ManuelORCID,Scheihing Garcia ElianaORCID,Muñoz-Merino Pedro J.ORCID,Delgado-Kloos CarlosORCID

Abstract

The prediction and explainability of student dropout in degree programs is an important issue, as it impacts students, families, and institutions. Nevertheless, the main efforts in this regard have focused on predictive power, even though explainability is more relevant to decision-makers. The objectives of this work were to propose a novel explainability model to predict dropout, to analyze its descriptive power to provide explanations regarding key configurations in academic trajectories, and to compare the model against other well-known approaches in the literature, including the analysis of the key factors in student dropout. To this effect, academic data from a Computer Science Engineering program was used, as well as three models: (i) a traditional model based on overall indicators of student performance, (ii) a normalized model with overall indicators separated by semester, and (iii) a novel configuration model, which considered the students’ performance in specific sets of courses. The results showed that the configuration model, despite not being the most powerful, could provide accurate early predictions, as well as actionable information through the discovery of critical configurations, which could be considered by program directors could consider when counseling students and designing curricula. Furthermore, it was found that the average grade and rate of passed courses were the most relevant variables in the literature-reported models, and that they could characterize configurations. Finally, it is noteworthy that the development of this new method can be very useful for making predictions, and that it can provide new insights when analyzing curricula and and making better counseling and innovation decisions.

Funder

Erasmus+

Ministerio de Ciencia, Innovación y Universidades

Publisher

Universidad Nacional de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3