Training a multilayer neural network for the Euro-dollar (EUR/ USD) exchange rate

Author:

Villamil Torres Jaime Alberto,Delgado Rivera Jesús Alberto

Abstract

A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies) will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs) are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Engineering since the 1980s. ANNs appear to be an alternative for modelling the behavior of financial variables which resemble (as first approximation) a random walk. This paper reports the results of using ANNs for Euro/USD exchange rate trading and the usefulness of the algorithm tor chemotaxis leading to training networks thereby maximising an objective function re predicting a trader’s profits. JEL: F310, C450.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

Reference18 articles.

1. Bremermann, H.J, Anderson, R.W., How the Brain Adjusts Synapses -Maybe., En: Automated Reasoning. Essays in Honor of Woody Bledsoe, Robert S. Boyer (Ed.), Boston, Kluwer Academic Publishers, 1991.

2. Delgado, A., Inteligencia Artificial y MiniRobots., Bogotá, Ecoe Ediciones, 1998.

3. Delgado, A., Control of Nonlinear Systems Using a Self-Organising Neural Network., Neural Computing & Applications, No. 9, 2000, pp. 113-123.

4. Dunis, C., Willians, M., Modelling and Trading the EUR/USD Exchange Rate: Do Neural Network Models Perform Better? Liverpool Business School, Working Paper, 2002. Disponible en: www.cibef.com

5. Fama. E., The Behaviour of Stock Market Prices., Journal of Business, No. 38, 1969, pp. 34-105.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3