Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)

Author:

Chivatá Cárdenas Ibsen

Abstract

This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes), multinomial probability distribution and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools). This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty encompassed the whole range (domain) of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, relevant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm) would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory procedure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

Reference15 articles.

1. Almond, R. G., Discussion: Fuzzy Logic: Better Science? Or Better Engineering?, Technometrics, Vol. 37, No. 3, Disponible en http://links.jstor.org, 1995.

2. Bogardi, I., Duckstein, L., The Fuzzy Logic Paradigm of Risk Analysis., Conference Proceeding Risk-Based Decision making in Water Resources X, Reston: American Society of Civil Engineers, 2003.

3. Bogardi, I., Coping with uncertainties in flood management., Transboundary Floods: Reducing Risks Through Flood Management, The Netherlands: Springer, 2006.

4. Borgman, L., New Nonparametric Methods in Risk Analysis Based on Resampling Techniques and Empirical Simulation, Proceedings of the International Conference., Civil Engineering in the Oceans VI. Baltimore, Maryland, USA: ASCE, 2004.

5. Chivatá, I., Contribuciones para el tratamiento de la incertidumbre en la estimación de la amenaza por fenómenos de remoción en masa, Tesis, Maestría en Medio Ambiente y Desarrollo, Manizales: Universidad Nacional de Colombia., 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3