A new algorithm for detecting and correcting bad pixels in infrared images

Author:

Restrepo Girón Andrés David,Loaiza Correa Humberto

Abstract

An image processing algorithm detects and replaces abnormal pixels individually, highlighting them amongst their neighbours in a sequence of thermal images without affecting overall texture, like classical filtering does. Bad pixels from manufacture or constant use of a CCD device in an IR camera are thus detected and replaced with a very good success rate, thereby reducing the risk of bad interpretation. Some thermal sequences from CFRP plates, taken by a Cincinnati Electronics InSb IR camera, were used for developing and testing this algorithm. The results were compared to a detailed list of bad pixels given by the manufacturer (about 70% coincidence). This work becomes relevant considering that the number of papers on this subject is low; most of them talk about astronomical image pre-processing. Moreover, thermographic non-destructive testing (TNDT) techniques are gaining popularity in Colombia at introductory levels in industrial sectors such as energy generation and transmission, sugar production and military aeronautics.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

Reference14 articles.

1. Benítez, H., Contribución a la Caracterización de Defectos en Termografía Infrarroja mediante Máquinas de Aprendizaje., Tesis doctoral, Universidad del Valle, Programa de Posgrados en Ingeniería Eléctrica y Electrónica, 2008.

2. Benítez, H., Ibarra, C., Bendada, H., Maldague, X., Loaiza, H., Caicedo, E., Procesamiento de Imágenes Infrarrojas para la Detección de Defectos en Materiales., TECNURA, revista de la Facultad de Ingeniería de la Universidad Distrital Francisco José de Caldas, Vol 10, No. 20, 2007.

3. Benítez, H., Ibarra, C., Bendada, H., Maldague, X., Loaiza, H., Caicedo, E., Definition of a new Thermal Contrast and Pulse Correction for Defect Quantification in Pulsed Thermography., Infrared Physics and Technology, 2007.

4. Brändström, U., Removing the Instrument Signature., En: The Auroral Large Imaging System (ALIS): design, operation and scientific results. Swedish Institute of Space Physics, 2009. [citado en mayo de 2009]

5. Cresitello, M., Aldcroft, T., Morris, D., On the Fly Bad Pixel Detection for the Chandra X-ray Observatory's Aspect Camera., En: Astronomical Data Analysis Software and Systems X. Harvard Smithsonian Center for Astrophysics, ASP Conference Series, Vol. 238, 2001.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3