Bearing capacity and settlement prediction of multi-edge skirted footings resting on sand

Author:

Gnananandarao Tammineni,Khatri Vishwas Nandkishor,Dutta Rakesh KumarORCID

Abstract

This paper presents the application of artificial neural networks (ANN) and multivariable regression analysis (MRA) to predict the bearing capacity and the settlement of multi-edge skirted footings on sand. Respectively, these parameters are defined in terms of the bearing capacity ratio (BCR) of skirted to unskirted footing and the settlement reduction factor (SRF), the ratio of the difference in settlement of unskirted and skirted footing to the settlement of unskirted footing at a given pressure. The model equations for the prediction of the BCR and the SRF of the regular shaped footing were first developed using the available data collected from the literature. These equations were later modified to predict the BCR and the SRF of the multi-edge skirted footing, for which the data were generated by conducting a small scale laboratory test. The input parameters chosen to develop ANN models were the angle of internal friction (ϕ) and skirt depth (Ds) to the width of the footing (B) ratio for the prediction of the BCR; as for the SRF one additional input parameter was considered: normal stress (𝛔). The architecture for the developed ANN models was 2-2-1 and 3-2-1 for the BCR and the SRF, respectively. The R2 for the multi-edge skirted footings was in the range of 0,940-0,977 for the ANN model and 0,827-0,934 for the regression analysis. Similarly, the R2 for the SRF prediction might have been 0,913-0,985 for the ANN model and 0,739-0,932 for the regression analysis. It was revealed that the predicted BCR and SRF for the multi-edge skirted footings with the use of ANN is superior to MRA. Furthermore, the results of the sensitivity analysis indicate that both the BCR and the SRF of the multi-edge skirted footings are mostly affected by skirt depth, followed by the friction angle of the sand.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3