Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-point Search Metaheuristics

Author:

Pérez-Castro NancyORCID,Acosta-Mesa Héctor GabrielORCID,Mezura-Montes EfrénORCID,Cruz-Ramírez NicandroORCID

Abstract

The increasing production of temporal data, especially time series, has motivated valuable knowledge to understand phenomena or for decision-making. As the availability of algorithms to process data increases, the problem of choosing the most suitable one becomes more prevalent. This problem is known as the Full Model Selection (FMS), which consists of finding an appropriate set of methods and hyperparameter optimization to perform a set of structured tasks as a pipeline. Multiple approaches (based on metaheuristics) have been proposed to address this problem, in which automated pipelines are built for multitasking without much dependence on user knowledge. Most of these approaches propose pipelines to process non-temporal data. Motivated by this, this paper proposes an architecture for finding optimized pipelines for time-series tasks. A micro-differential evolution algorithm (µ-DE, population-based metaheuristic) with different variants and continuous encoding is compared against a local search (LS, single-point search) with binary and mixed encoding. Multiple experiments are carried out to analyze the performance of each approach in ten time-series databases. The final results suggest that the µ-DE approach with rand/1/bin variant is useful to find competitive pipelines without sacrificing performance, whereas a local search with binary encoding achieves the lowest misclassification error rates but has the highest computational cost during the training stage.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3