Secondary Control Strategy without Communications for Unbalanced Isolated Microgrids
-
Published:2024-01-30
Issue:
Volume:11
Page:
-
ISSN:2357-6618
-
Container-title:Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL
-
language:
-
Short-container-title:SICEL
Author:
Salinas Cala Andres MauricioORCID, Rey López Juan ManuelORCID, Mantilla Villalobos María AlejandraORCID
Abstract
In the context of the energy transition, electrical microgrids have become a key energy solution for isolated zones. For this type of application, low-voltage networks with unbalanced loads are commonly connected. Despite this, many of the hierarchical control strategies presented in the literature have been designed to operate properly only in the presence of balanced loads. For this reason, it is relevant to study how control strategies can be adapted to this scenario, especially those that reduce the dependence on communications to enhance flexibility and reliability. In this sense, this paper presents a secondary layer control strategy that does not require the use of communications to operate in isolated microgrids with unbalanced loads. The strategy guarantees proper performance in terms of power-sharing between the distributed generators of the microgrid. Simulations on Matlab/Simulink are presented to validate the response of proposal.
Publisher
Universidad Nacional de Colombia
Reference40 articles.
1. C. Breyer, S. Khalili, D. Bogdanov, M. Ram, A. Solomon-Oyewo, A. Aghahosseini, A. Gulagi, A. A. Solomon, D. Keiner, G. Lopez, P. Østergaard, H. Lund, B. V. Mathiesen, M. Z. Jacobson, M. Victoria, S. Teske, T. Pregger, V. Fthenakis, M. Raugei, H. Holttinen, U. Bardi, A. Hoekstra, B. Sovacool, “On the History and Future of 100% Renewable Energy Systems Research”, IEEE Access, vol. 10, pp. 78176-78218, 2022, doi: 10.1109/ACCESS.2022.3193402 2. M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Kabalan, A. H. Hajimiragha, D. Peralta, M. A. Elizondo, K. P. Schneider, F. K. Tuffner, J. Reilly, “Microgrid Stability Definitions, Analysis, and Examples”, IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 13-29, 2020, doi: 10.1109/TPWRS.2019.2925703 3. D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, N. D. Hatziargyriou, “Trends in Microgrid Control”, IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905-1919, 2014, doi: 10.1109/TSG.2013.2295514 4. M. Aybar-Mejía, J. Villanueva, D. Mariano-Hernández, F. Santos, A. Molina-García, “A Review of Low-Voltage Renewable Microgrids: Generation Forecasting and Demand-Side Management Strategies”, Electronics, vol. 10, no. 17, p. 2093, 2021, doi: 10.3390/electronics10172093 5. J. M. Rey, G. A. Vera, P. Acevedo-Rueda, J. Solano, M. A. Mantilla, J. Llanos, D. Sáez, “A Review of Microgrids in Latin America: Laboratories and Test Systems”, IEEE Latin America Transactions, vol. 20, no. 6, pp. 1000-1011, 2022, doi: 10.1109/TLA.2022.9757743
|
|