Abstract
El presente artículo sintetiza la investigación realizada en el uso de técnicas de clasificación para un proceso de caracterización de posturas de personas que tiene como objetivo la identificación de emociones (Asombro, Enfado, Felicidad y Tristeza). En este proyecto de investigación fue necesario utilizar una metodología de investigación exploratoria en tres fases donde el resultado es una apropiación tecnológica y un modelo de clasificación de emociones en personas en posición de pie, usando el algoritmo de Skeletal Tracking de Kinect basado en software libre. Se propuso un vector de características para el reconocimiento de patrones usando técnicas de clasificación como SVM, KNN y Redes Bayesianas en 17.882 datos obtenidos en una muestra de entrenamiento de 14 personas. Como resultado se evidenció que el algoritmo KNN tiene una efectividad máxima del 89.0466% superando a los demás algoritmos seleccionados.
Publisher
Universidad Nacional de Colombia
Reference26 articles.
1. Mann, S., Intelligent image processing. IEEE, John Wiley & Sons, Inc., 2002. DOI: /10.1002/0471221635
2. Valli, A., Natural interaction white paper, 2007.
3. Rivera-Mateos, M., El turismo experiencial como forma de turismo responsable e intercultural, en: García-Rodríguez, L., Roldán-Tapía, A.R., Eds., Relac. Intercult. en la Divers., 2013, pp. 199-217.
4. Smith, W.L., Experiential tourism around the world and at home: definitions and standards, Int. J. Serv. Stand., 2(1), 1 P, 2006. DOI: 10.1504/IJSS.2006.008156
5. Dale, R., Moisl, H. and Somers, H.L., Handbook of natural language processing, Marcel Dekker, 2000.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Smart Home System Based on Action Recognition;Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery;2021