Rigorous spherical bearing with Soldner coordinates and azimuth angles on sphere

Author:

Bektaş SebahattinORCID

Abstract

Meridian systems, called Soldner coordinates (parallel coordinate) systems, have found wide application in geodesy. In particular, the meridian system constitutes a suitable base for the Gauss-Kruger projection of the ellipsoid and the sphere. Soldner coordinates can be used in Cassini-Soldner projection without any processing. As it is known, the directions of the edges are shown with azimuth angles in the geographic coordinate system and the bearing angles in the Soldner coordinate system. Bearing or azimuth angles are frequently used in geodetic calculations. These angles give the direction of sides in the clockwise direction from a certain initial direction. Both angle values range from 0 to 360 degrees and are usually calculated from the arctan function. But the arctan function returns an angle value between -90 and +90 degrees. Therefore, it is necessary to analyze the quarter for the angle found. For practical computations, the quadrants of the arctangents are determined by the signs of the numerator and denominator in the tangent formulas. Determining the quarter of the angles is done with if…, then…, end..., blocks on the computer. It should be noted that each comparison requires a separate processing time. This study will be given how to calculate both bearing and azimuth angles with direct formulas without any need to examine them. In addition, a solution proposal will be given against the division by zero errors in the bearing and azimuth angles calculations.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Reference8 articles.

1. Antes, E. (1990). Noch ein Beitrag zur Berechung des Richtungwinkels. Verm.wesen, 115.

2. Bektaş, S. (2019). Direct bearing angles determination on globe. MOJ Civil Engineering, 5(4), 78–80.

3. Bektaş, S. (2021). Jeodezi-1, Atlas Akademi Press. ISBN 978-605-7839-87-9.

4. Breuer, P., Hirle, M., & Joeckel, R. (1985). Basic- programmierbare Taschenrechner und Handcomputer. Mitt.des Deutscher Verein für Vermessungswesen-Bayern, 37, Jahr. Sonderheft 1/1985, s.218-219

5. Gellert, W., Küstner, H., Hellwich, M., & Kastner, H. (1972). Kleine Enzyklopadie: Mathematik. Verlag Harri Deustch, Frankfurt/ M. und Zürich.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3