Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics

Author:

Wang Zhongjie,Lin Min

Abstract

In order to reduce the risk of slope stability evaluation due to the fuzziness of calculation parameters, a finite element analysis method of slope stability based on fuzzy statistics is proposed. Based on the principle of quasi-static method and with the help of the finite element software COMSOL multiphysics, this paper studies the stability of the gravel soil accumulation rock slope under the action of different seismic acceleration. By analyzing the displacement, plastic zone and safety factor of the rock soil slope, the stability of the rock soil slope is analyzed. The research results show that the fuzziness of mechanical parameters of rock and soil slope will lead to the fuzziness of position displacement and stress analysis results of rock and soil slope, and the analysis of rock and soil slope with the method of fuzzy finite element analysis can strengthen the comprehensive understanding of position displacement, stress and safety of rock and soil slope by engineers and technicians, and reduce the stability of rock and soil slope due to the fuzziness of calculation parameters to a certain extent Evaluate the risk qualitatively.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prophetical Modeling Using Limit Equilibrium Method and Novel Machine Learning Ensemble for Slope Stability Gauging in Kalimpong;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-06-23

2. Stability analysis of rock slope under Sujiaba overpass in Chongqing City based on kinematic and numeric methods;Frontiers in Earth Science;2023-04-11

3. Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases;International Journal of Mining Science and Technology;2023-01

4. Landslide prediction and early warning system (LPEWS) in the regions of coonoor;PROCEEDINGS OF THE 4TH INTERNATIONAL COMPUTER SCIENCES AND INFORMATICS CONFERENCE (ICSIC 2022);2023

5. Effect of Overstress on Slope Stability in a Fractured Massif;Springer Proceedings in Earth and Environmental Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3