Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq

Author:

Hassan AsemORCID

Abstract

In geotechnical practice, there is a continuous demand for an efficient method for measuring the soil moisture content and dry unit weight of compacted soils used in a wide range of earthwork constructions. The Electrical Resistivity method has increasingly been used for rapid and non-invasive assessment of some geotechnical properties. This study aims to evaluate the influence of Moisture Content (MC), Dry Unit Weight (DUW), and Compaction Energy (E) on the Electrical Resistivity (ER) of soil collected from the east of Baghdad City, Iraq. To achieve this goal, soil specimens were compacted to various MC and DUW found in geotechnical practice using different E levels. The ER of prepared specimens was measured using the two electrodes method and compared with various geotechnical parameters related to the compaction process. The results showed that the employed MC, DUW, and E levels influenced the ER. The higher the MC, DUW, and E, the lower the ER. However, the ER was more sensitive to these variables for specimens compacted dry of the optimum. Furthermore, the ER was correlated very well with Volumetric Moisture Content ϴ and Degree of Saturation Sr of soil, with a high correlation coefficient (R2 >94%) and very low p-values, which indicated that these correlations were statistically significant. The current findings indicate the usefulness of the ER method for predicting these parameters. Therefore, using the ER method as a rapid and cost-effective technique for the preliminary evaluation of soil compaction variables in earthwork constructions is recommended. However, the current laboratory findings must be confirmed on different soil types.  

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3