Water temperature prediction in a subtropical subalpine lake using soft computing techniques

Author:

Samadianfard Saeed,Kazemi Honeyeh,Kisi Ozgur,Liu Wen-Cheng

Abstract

Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths. ResumenLa temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3