Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face
-
Published:2021-01-26
Issue:4
Volume:24
Page:499-506
-
ISSN:2339-3459
-
Container-title:Earth Sciences Research Journal
-
language:
-
Short-container-title:Earth sci. res. j.
Author:
Xie Xiaoping,Fang Xinqiu,Liang Minfu,Ai Dechun
Abstract
Under the influence of geological structure, the surrounding rock of semi-coal seam is easy to be loose and fractured, and the repairing rate is high. Therefore, it is of great theoretical and practical significance to study semi-coal seam mining's mechanism and control technology. In this paper, the geological evolution principle of the semi-coal seam is analyzed theoretically. The mechanic's relationship between the mining height of the semi-coal face and the lower coal seam's pressure relief is interpreted. The mechanism of eliminating bad blind areas in non-pillar mining of upper protective seam is analyzed. Through numerical simulation analysis, it is concluded that the expansion deformation rate of a protective layer increases linearly with the increase of mining thickness of the protective layer, and the width of undesirable blind zone of coal seam increases linearly with the rise of protective layer thickness. This paper puts forward the technology of non-pillar mining in the protective seam's semi-coal and rock face. Field industrial test results show that the technology achieves the overall pressure relief and reflection reduction of low permeability and high gas coal seams. The underlying 3 + 4 protective layer achieves the general pressure relief and reflection reduction of low permeability and high gas coal seams. Coalbed methane can be pre-drained up to 18 m3/min with a concentration of 90%.
Publisher
Universidad Nacional de Colombia
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献