An experimental test for detecting effective reflector height with GPS SNR data

Author:

Tunalioglu Nursu,Altuntas Cemali

Abstract

This study aims to estimate effective reflector heights and height differences using the basic geometrical principle of multipath theory by controlling the signal quality for estimations. The geometry of the reflecting signal allows computing the effective reflector height, which is extracted from where the signal reflects on the ground and arrives at the GPS antenna phase center. To achieve that, an experimental case with two stations was conducted in the snow-free environment and GPS receivers were mounted on reflectors, which allowed to measure daily in-situ reflector heights and artificial decrement variations. The reflections from the roof surface were tracked with the first-Fresnel zones. To validate the estimated reflector heights in a controlled test environment, twelve different combinations within four simulated scenarios as a combination of decrement values have been implemented and accuracy analysis was performed. Here, a vertical shift procedure on reflectors was applied. Meanwhile, the vertical shift amount was tracked in each computation to determine which reflected signal could be able to use for assigning reflector height as effective. Comparisons of the estimated heights and in-situ measurements show congruency with ±1.2 cm to ±8 cm accuracy. The best overall accuracy of the model among the four scenarios is computed as ±2.2 cm. When the vertical shift decrements are considered, the RMSE values are estimated within ±2.92 cm to ±3.96 cm. Although the RMSEs of the differences show a good agreement with estimated reflector heights, it is found that some reflector height estimations are statistically insignificant.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3