Abstract
The local dependence function (LDF) describes changes in the correlation structure of continuous bivariate random variables along their range. Bivariate density functions with Beta marginals can be used to model jointly a wide variety of data with bounded outcomes in the (0,1) range, e.g. proportions. In this paper we obtain expressions for the LDF of bivariate densities constructed using three different copula models (Frank, Gumbel and Joe) with Beta marginal distributions, present examples for each, and discuss an application of these models to analyse data collected in a study of marks obtained on a statistics exam by postgraduate students.
Publisher
Universidad Nacional de Colombia
Subject
Statistics and Probability
Reference37 articles.
1. Ali, M. M., Mikhail, N. & Haq, M. S. (1978), 'A class of bivariate distributions including the bivariate logistic', Journal of Multivariate Analysis 8(3), 405-412.
2. Azzalini, A. & Dalla Valle, A. (1996), 'The multivariate skew-normal distribution', Biometrika 83(4), 715-726.
3. D'Este, G. M. (1981), 'A Morgenstern-type bivariate gamma distribution', Biometrika 68(1), 339-340.
4. El-Bassiouny, A. & Jones, M. (2009), 'A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions', Statistical Methods and Applications 18(4), 465-481.
5. Escarela, G. & Hernández, A. (2009), 'Modelling random couples using copulas', Revista Colombiana de Estadística 32(1), 33-58.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献