Abstract
La gentrificación no siempre es detectada por la sociedad, la política y la planificación a tiempo de interpretar sus dinámicas y de llevar a cabo intervenciones que mitiguen sus efectos adversos. Sus implicaciones son tan importantes en la fisionomía social de las ciudades, que será relevante toda herramienta que permita pronosticar o evidenciar cualquier tipo de señal de la gentrificación. La investigación trata de evaluar la viabilidad de la detección de ámbitos vinculados a procesos de gentrificación, incipientes o asentados, mediante el uso de fuentes de información comunes en las ciudades, como son los censos de viviendas. Para ello se propone el uso de metodologías de extracción de información basadas en técnicas de minería de datos procedentes de las ciencias de la Inteligencia Artificial. La metodología se evalúa experimentalmente en un territorio complejo y extenso, la costa mediterránea peninsular española. Los resultados permiten identificar un perfil urbano que incluye todas las barriadas a las que el estado del arte atribuye gentrificación, resultando la proporción de viviendas en alquiler determinante. Se concluye que la metodología propuesta es útil para evidenciar territorios con señales similares a los entornos urbanos con gentrificación, permitiendo la detección temprana de procesos semejantes en otros ámbitos.
Publisher
Universidad Nacional de Colombia
Subject
Urban Studies,Arts and Humanities (miscellaneous),Geography, Planning and Development
Reference35 articles.
1. Abarca-Alvarez, F. J., Campos-Sánchez, F. S., & Osuna-Pérez, F. (2015). Taxonomía de las inmigraciones turísticas de Andalucía basada en las cualidades de sus asentamientos urbanos. En Migraciones Contemporáneas, Territorio y Urbanismo (pp. 301-315). Cartagena.
2. Abarca-Alvarez, F. J., Campos-Sánchez, F. S., & Reinoso-Bellido, R. (2017). Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa, 6(11), 33-51. http://doi.org/10.18537/est.v006.n011.a03
3. Abarca-Alvarez, F. J., & Osuna-Pérez, F. (2013). Cartografías semánticas mediante redes neuronales: los mapas auto-organizados (SOM) como representación de patrones y campos. EGA. Revista de expresión gráfica arquitectónica, 18(22). http://doi.org/10.4995/ega.2013.1692
4. Alexis, O., & Villanueva, R. (2017). GENTRIFICACIÓN EN CENTROS HISTÓRICOS : UNA DISCUSIÓN CONCEPTUAL. Devenir - Revista de estudios sobre patrimonio edificado, 4(7), 69-82.
5. Basara, H. G., & Yuan, M. (2008). Community health assessment using self-organizing maps and geographic information systems. International journal of health geographics, 7, 67. http://doi.org/10.1186/1476-072X-7-67
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献