Determine velocity of fluid in curved micro channels fabricated with 3d printing (SLA)

Author:

Esparza-Proaño NícolasORCID,Cabrera-Moreta Víctor H.ORCID

Abstract

The study investigated fluid dynamics in curved microchannels, exploring 3D printing parameters, channel geometry, and fluid properties, crucial for applications in medicine and energy. It highlighted the importance of microfluidics in handling small samples and enabling rapid analysis, stressing the need for precise measurement techniques to validate fluid velocity. Using 3D printing for microchannel design illustrated their utility, with microscopy aiding flow behavior comprehension. The research aimed to validate fluid velocity, covering technology analysis, microdevice design, fabrication, and measurement methodologies. It successfully fabricated microdevices confirming fluid movement via capillarity, revealing the relationship between channel radius and flow velocity. Distinct flow velocity patterns were observed, vital for design optimization. The study affirmed capillary flow as a spontaneous phenomenon, with fluid velocity variations along curved microchannels consistent with mass conservation principles in incompressible flows.

Publisher

Universidad Nacional de Colombia

Reference20 articles.

1. Rodríguez, E., Tecnología microfluídica para el control ambiental. Fieras de la Ingeniería. [ONLINE]. Accessed: Dec. 04, 2023. [Online]. Available at: https://web.archive.org/web/20131018020809/http://www.fierasdelaingenieria.com/tecnologia-microfluidica-para-el-control-ambiental/

2. Hurtado-De Mendoza, A., Estudio de la generación de emulsiones en micro fluidos mediante simulación numérica, Nov. 2017.

3. Sun, B., Jiang, J., Shi, N., and Xu, W., Application of microfluidics technology in chemical engineering for enhanced safety, Process Safety Progress, 35(4), pp. 365–373, 2016. DOI: https://doi.org/10.1002/PRS.11801.

4. Méndez, M. de O.J.L., Formación de microcápsulas para envío de farmacos a partir de emulsiones usando dispositivos microfluidicos, Tesis, Dr. Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2018, 134 P.

5. González-Esparza, D., Diseño, modelado y fabricación de un microsistema fluídico para la separación de células tumorales. Tesis MSc. Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Veracruz, Mexico, 2021, 53 P.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3