Abstract
The objective of this work is to use the autonomous learning methodology as a tool in vehicle maintenance management. In obtaining data, faults in the fuel supply system have been simulated, causing anomalies in the combustion process that are easily detectable by vibrations obtained from a sensor in the engine of an agricultural tractor. To train the classification algorithm, 4 engine states were used: BE (optimal state), MEF1, MEF2, MEF3 (simulated failures). The applied autonomous learning is of the supervised type, where the samples were initially characterized and labeled to create a database for the execution of the training. The results show that the training carried out within the classification algorithm has an efficiency greater than 90%, which indicates that the method used is applicable in the management of vehicle maintenance to predict failures in engine operation.
Publisher
Universidad Nacional de Colombia
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献