Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem

Author:

Shaw Jerry L.ORCID,Fuqua DonovanORCID,Sohn HansukORCID,Rodriguez-Borbon Manuel IvanORCID,Pimentel VictorORCID

Abstract

The traveling salesman problem (TSP) is the canonical combinatorial optimization problem famous throughout literature.  There exists an objective function associated with every feasible solution.  However, the increase in the number of possible solutions makes this an NP-Hard problem.  We show that the central limit theorem (CLT) applies to the problem.  We then conduct extensive computational testing to show that the cycle lengths tend to a normal distribution as the problem grows large.  When the size of the TSP problem exceeds computational power, better understanding solution distributions allows us to save resources.  This is a non-trivial result as understanding solution distributions in huge TSP problems helps us to minimize computational effort that may not lead to significantly better results.

Publisher

Universidad Nacional de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3