Using Copula Functions to Estimate The AUC for Two Dependent Diagnostic Tests

Author:

Bravo Melo Luis Carlos,Portilla Yela Jennyfer,Tovar Cuevas José Rafael

Abstract

When performing validation studies on diagnostic classification procedures, one or more biomarkers are typically measured in individuals. Some of these biomarkers may provide better information; moreover, more than one biomarker may be significant and may exhibit dependence between them. This proposal intends to estimate the Area Under the Receiver Operating  Characteristic Curve  (AUC)  for classifying individuals in a screening study. We analyze the dependence between the results of the tests by means of copula-type dependence (using FGM and Gumbel-Barnett copula functions), and studying the respective AUC under this type of dependence. Three different dependence-level values were evaluated for each copula function considered. In most of the reviewed literature, the authors assume a normal model to represent the performance of the biomarkers used for clinical diagnosis. There are situations in which assuming normality is not possible because that model is not suitable for one or both biomarkers. The proposed statistical model does not depend on some distributional assumption for the biomarkers used for diagnosis procedure, and additionally, it is not necessary to observe a strong or moderate linear dependence between them.

Publisher

Universidad Nacional de Colombia

Subject

Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3