When negativity is the fuel. Bots and Political Polarization in the COVID-19 debate

Author:

Robles José-ManuelORCID,Guevara Juan-AntonioORCID,Casas-Mas BelénORCID,Gómez DanielORCID

Abstract

The contexts of social and political polarization are generating new forms of communication that affect the digital public sphere. In these environments, different social and political actors contribute to extreme their positions, using bots to create spaces for social distancing where hate speech and incivility have a place, a phenomenon that worries scientists and experts. The main objective of this research is to analyze the role that these automated agents played in the debate on social networks about the Spanish Government’s management of the global COVID-19 pandemic. For this, “Social Big Data Analysis” techniques were applied: “machine learning algorithms to know the positioning of users; bot detection algorithms; “topic modeling” techniques to learn about the topics of the debate on the web, and sentiment analysis. We used a database comprised of Twitter messages published during the confinement, as a result of the Spanish state of alarm. The main conclusion is that the bots could have served to design a political propaganda campaign initiated by traditional actors with the aim of increasing tension in an environment of social emergency. It is argued that, although these agents are not the only actors that increase polarization, they do contribute to deepening the debate on certain key issues, increasing negativity. Los contextos de polarización social y política están generando nuevas formas de comunicar que inciden en la esfera pública digital. En estos entornos, distintos actores sociales y políticos estarían contribuyendo a extremar sus posicionamientos, utilizando «bots» para crear espacios de distanciamiento social en los que tienen cabida el discurso del odio y la «incivility», un fenómeno que preocupa a científicos y expertos. El objetivo principal de esta investigación es analizar el rol que desempeñaron estos agentes automatizados en el debate en redes sociales sobre la gestión del Gobierno de España durante la pandemia global de COVID-19. Para ello, se han aplicado técnicas de «Social Big Data Analysis»: algoritmos de «machine learning» para conocer el posicionamiento de los usuarios; algoritmos de detección de «bots»; técnicas de «topic modeling» para conocer los temas del debate en la red, y análisis de sentimiento. Se ha utilizado una base de datos compuesta por mensajes de Twitter publicados durante el confinamiento iniciado a raíz del estado de alarma español. La principal conclusión es que los «bots» podrían haber servido para diseñar una campaña de propaganda política iniciada por actores tradicionales con el objetivo de aumentar la crispación en un ambiente de emergencia social. Se sostiene que, aunque dichos agentes no son los únicos actores que aumentan la polarización, sí coadyuvan a extremar el debate sobre determinados temas clave, incrementando la negatividad.

Funder

Ministerio de Economía y Competitividad

Publisher

Grupo Comunicar

Subject

Education,Communication,Cultural Studies

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3