The influence of forest tree species composition on the forest height predicted from airborne laser scanning data – A case study in Latvia

Author:

Ivanovs Janis,Lazdins Andis,Lang Mait

Abstract

Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition. Key words: forest inventory, airborne laser scanning, phenology, large scale forest mapping 

Publisher

Baltic Forestry

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3