Morphological variability of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) cones in the context of seed extraction

Author:

Gendek ArkadiuszORCID,Aniszewska Monika,Tulska Ewa,Siwek Joanna

Abstract

In the paper generating curves given by fourth-degree polynomials were used to model the shape of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) cones from the Polish Forest Districts of Kołaczyce (one batch) and Opole (two batches), and to calculate the surface area and volume of individual cones. However, it was not possible to construct generalized equations for the surface area and volume of Douglas fir cones due to the high variability of empirical coefficients. The surface area and volume of the cones were also calculated from their length and diameter based on formulas for a cylinder and a barrel corrected by constants k1 and k2. The mean surface area of closed Douglas fir cones determined for the first, second, and third batch using the generating function was 4,348.4 mm2, 3,857.0 mm2, and 2,844.7 mm2, and the volume was 27,212.4 mm3, 21,012.9 mm3, and 12,844.4 mm3, respectively. The corresponding values calculated from the geometric formulas for solids were 4,332.0 mm2, 3,838.0 mm2, and 2,862.9 mm2 for the surface area and 27,366.0 mm3, 20,648.9 mm3, and 13,375.3 mm3 for the volume. The evaporation area of open cones was found to be five times greater than that of closed cones, with the difference being statistically significant. The outer and inner surfaces of scales taken from the middle segment of Douglas fir cones were photographed using a Quanta 200 scanning microscope (FEIC). The characteristic elements of scale morphology were evaluated by means of MultiScan Base software package. The outer and inner surfaces of Douglas fir scales were found to differ in some important ways, similarly as it has been reported in the literature for the Scots pine, silver fir, European larch, and black alder. The outer surface of scales is formed by thick-walled cells with marked protrusions, while the inner surface reveals cells with thin, frayed walls in the region adjacent to the seeds and wings. Knowledge of the geometry of Douglas fir cones and the morphology of their scales may be helpful in optimizing seed extraction parameters for those cones. Key words: seed extraction, model, shape curve, surface area, volume, scanning electron microscope

Publisher

Baltic Forestry

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3