Canopy Gap Dynamics, Disturbances, and Natural Regeneration Patterns in a Beech-Dominated Hyrcanian Old-Growth Forest

Author:

Akbari Mazdi Ramezanali,Mataji Asadollah,Fallah Asghar

Abstract

Canopy gaps play a crucial role in forest dynamic processes and help preserve biodiversity, influence nutrient cycles, and maintain the complex structure of the forests. This study aimed to quantify the gap dynamics, regeneration establishment, and gap closure in a natural old-growth Hyrcanian forest in the north of Iran. We used a repeated inventory of gap size-frequency and fraction in beech (Fagus orientalis) dominant forest over a 9-year interval (2010–2019). The total gap area documented in 2010, 2016, and 2019 was 2,487, 6,890, and 8,864 m2, respectively. The gap area ranged from the smallest sizes of 139, 83, and 153 m2 to the largest sizes 906, 1,668, and 871 m2 in 2010, 2016, and 2019, respectively. Gap fraction significantly increased from 0.52%, 1.93%, and 3.7 in 2010, 2016, and 2019, respectively. The size distribution of gaps was strongly skewed to the medium class (200-500 m2), with approximately 60% of the gaps. Results revealed that total regenerations are not in correlation with gap size. Small gaps were closed within a few years through rapid horizontal canopy expansion of neighboring beech trees. The gap closure rate decreased by increasing the gap size (70% in 71 m2 to 10% in 1,600 m2). The highest density and greatest regeneration growth occurred mostly along the eastern part of gaps. The spatial distributions of regeneration density demonstrated differences in different gap size classes, which probably resulted from heterogeneity in the microenvironment within the gap and the differences in the regeneration responses to these variations. This investigation provided useful data for managing natural regenerations based on forest sustainability. The changes in gap patterns observed between 2010 and 2019 highlight the high value of repeated gap inventories for better comprehending the disturbance regeneration and dynamics of natural gaps. Keywords: Gap size, Gap development, Special distribution, Regeneration density, Gap closure

Publisher

Baltic Forestry

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3